填充效應(yīng)
混凝土在拌制合物時,為了獲得施工要求的流動性,常需要多加一些水(超過水泥水化所需水量), 這些多加的水不僅使水泥漿變稀,膠結(jié)力減弱,而且多余的水分殘留在混凝土中形成水泡或水道,隨混凝土硬化而蒸發(fā)后便留下孔隙。
減少混凝土實際受力面積,而且在混凝土受力時,易在孔隙周圍產(chǎn)生應(yīng)力集中。在混凝土中,內(nèi)部泌水受骨料顆粒的阻擋而聚集在骨料下面形成多孔界面。
水泥漿與骨料之間的界面過濾區(qū)由于多孔和有許多定向排列的大Ca(OH)2晶體,平行于骨料表面的大Ca(OH)2晶體較易開裂,比水化硅酸鈣凝膠(C-S-H)薄弱,成為混凝土內(nèi)部的強度薄弱區(qū)。
HPC(高強度混凝土)中由于摻入一定量的硅灰,其強度與普通混凝土(不摻硅灰)相比,有明顯改善。有學(xué)者曾計算:以15%的硅灰取代水泥,則在水泥顆粒數(shù)量與硅灰顆粒數(shù)量的比例為1∶2000000,即二百萬個硅灰對一個水泥顆粒,因此硅灰對HPC強度有很大影響。
在HPC中小于水泥顆粒直徑100倍的硅灰,填充于水泥漿體的孔隙間,填充于水泥顆粒的空隙間, 其效果如同水泥顆粒填充在骨料空隙之間和細(xì)骨料填充在粗骨料空隙之間一樣,從微觀尺度上增加HPC的密實度,提高了HPC的強度,這就是硅灰的“填充效應(yīng)”。
在HPC中,填充于水泥漿體中的硅灰使水泥漿體孔的數(shù)量明顯減少,勻質(zhì)性提高,而總空隙率基本保持不變。水泥漿與骨料界面過渡區(qū)的硅灰,降低了HPC的泌水,防止水分在骨料下面聚集,使骨料界面過渡區(qū)與水泥凈漿的顯微結(jié)構(gòu)相似, 從而提高了界面過濾區(qū)的密實度和有效減小界面過渡區(qū)的厚度。
微小硅灰顆粒成為Ca(OH)2的“晶種”,使Ca(OH)2晶體的尺寸更小,取向更隨機。
因此,硅灰的摻入提高了HPC中水泥凈漿與骨料的粘結(jié)強度,消除了混凝土中不同復(fù)合組分的“弱連接”問題,使HPC具有復(fù)合材料的特性。骨粒顆粒在HPC中起著增強作用,而不僅僅是惰性的填充物。硅灰對水泥凈漿(無骨料)的強度提高影響不是很大,但卻能使相同水膠比的混凝土的強度明顯高于其基體(凈漿)的強度。
火山灰效應(yīng)
在硅酸鹽水泥水化過程中,水泥水化反應(yīng)生成水化硅鈣凝膠(C-S-H)、氫氧化鈣(Ca(OH)2)和鈣礬石等水化產(chǎn)物。 其中Ca(OH)2對強度有不利影響。硅灰中高度分散的SiO2組分能與Ca(OH)2反應(yīng)生成C-S-H凝膠, 即所謂火山灰效應(yīng).
Ca(OH)2+SiO2+H2O→C-S-H
許多研究表明:在有硅灰存在的情況下,水泥水化早期的水化產(chǎn)物中有大量Ca(OH)2, 隨著齡期的延長,Ca(OH)2的量越來越少,甚至完全測不到。
硅灰的火山灰效應(yīng)解釋:硅灰接觸拌合水后首先形成富硅的凝膠 ,并吸收水分;凝膠在未水化水泥顆粒之間聚集,逐漸包裹水泥顆粒;Ca(OH)2與該富硅凝膠的表面反應(yīng)產(chǎn)生C-S-H凝膠, 這些來源于硅灰和Ca(OH)2的C-S-H凝膠多生成于水泥水化的C-S-H凝膠孔隙之中, 大大提高了結(jié)構(gòu)密實度。
也就是說:硅灰的火山灰效應(yīng)能將對強度不利的Ca(OH)2轉(zhuǎn)化成C-S-H凝膠,并填充在水泥水化產(chǎn)物之間,有力地促進(jìn)了HPC強度的增長。同時,硅灰與Ca(OH)2反應(yīng),Ca(OH)2不斷被消耗,會加快水泥的水化速率,提高HPC的早期強度。
孔隙溶液化學(xué)效應(yīng)
在水泥-硅灰水化體系中,硅灰與水泥的比率增加則水化產(chǎn)物的Ca/Si比降低。
Ca/Si比低,相應(yīng)的C-S-H凝膠就會結(jié)合較多的其它離子,如鋁和堿金屬離子等。
這樣就會使孔隙溶液的堿金屬離子濃度大幅度降低。這就所謂孔隙溶液化學(xué)效應(yīng)。
增加硅灰取代水泥的比率,則孔隙溶液的pH值降低。
這是由于堿金屬離子和Ca(OH)2與硅灰反應(yīng)而消耗引起的。
對于含有堿活性骨料的HPC,硅灰這種降低孔隙堿金屬離子(Ka+、Na+)濃度的作用非常重要, 因為能夠有效地削弱甚至消除發(fā)生堿-硅酸反應(yīng)(ASR)的危害。硅灰還可提高HPC的電阻率和大幅度降低Cl-的滲透速率,防止鋼筋銹蝕, 提高HPC的強度和耐久性。